Photo History of the Simplesat Experiment

Dave Skillman, P.I.

Initial GPS tests atop Bldg 6

- demonstrated 1 degree accuracy
- typical rate noise 200 arcsec/sec

Initial construction of telescope tube

- vertical rails framed by octagonal rings

Inner frame panels attached

- baseplate/marmon (left)
- secondary mirror support (right)

Fit check of solar array panels, primary mirror preps

Align secondary mirror and tack into place - corrector plate held by RTV on outer edge

Camera ruggedize by remounting circuit board

Circuit board epoxied to G-10 block (mechanical/thermal)

Reworked camera is mounted to focus table

Focus table lifting thread, limit block, preload springs and motor

Focus mechanism staking with flexible epoxy

Optical (X) axis reaction wheel with stepper drive

Focus mechanism assembly

Focus mechanism details

- reaction wheel and focus drive gears (left)
- focus motor, table, camera (right)

Camera/focus wiring and thermal shunt

Body reaction wheel stepper motor and mount

Y and Z axis reaction wheel motor mountings

Power distribution box and electronics board

Final power distribution circuit board (top/bottom)

Separation switch mounting plate

- each arm adjustable to mate with push plate

Array spacer blocks and support pins

Spacecraft handling box and general purpose fixture

Box rotated right to attach lower end closure

Box used to support spacecraft during camera installation

Camera installed, reaction wheel motor visible through baseplate

Fit check of separation switches

Camera/focus-mech and secondary baffle installation

Star-imaging test through roof hatch with sidereal drive

Typical temperature sensor mounting on electronics

Summer student winding torque coils

X-axis torque coil mounting (left) Battery box fit check (right)

Battery box coatings and cell mounting

Finished battery boxes and KOH absorber installation

Getting ready for first balance test (no arrays)

Balance tests locate center-of-mass

Camera/Focus-mech shrouds and baffles installed

CPU thermal mounting

Removal of GPS lithium battery and thermal vacuum test of CPU boxes

Summer student mounts thermal sensors on array panels

Arrays are back-wired to cancel magnetic fields

Power distribution box RF dc/dc convertors (left) and Y/Z hysteresis rods (right)

Harness tie-down details

- note reaction wheel cover (right)

Pre-vib checkout with CPU peripherals attached

Pre-vib CG check (inertia moments by model)

Pre-vib packing into carrying box

Primary mirror bond failure during vib test

New primary and rebuilt support structure

Final vib test successful

Solar array checkout and GPS self-survey

Simplesat on ejection system, canister installed

Simplesat ready-to-ship, installed in Discovery (STS-105)

Ground station tower and RF gear

Ground station tower and Yagi antenna atop Bldg33

Ejected into orbit 20 Aug 2001 over Lake Michigan

